Forecast of winter wheat yield (Triticum aestivum L.) by the value of the NDVI vegetation index
https://doi.org/10.26897/1997-6011-2025-2-43-49
Abstract
Tis noted that productivity is an integral indicator of the condition of agricultural lands. Earth remote sensing technology is effectively used to observe plants during the growing season. The value of the NDVI spectral vegetation index can be used to predict the yield of various crops. The purpose of the study was to predict the yield of winter wheat (Triticum aestivum L.) based on the value of the NDVI vegetation index. The scientifi c and practical signifi cance of the research results obtained using the presented methodology can be adapted for phenological observations and studying the productivity of Triticum aestivum L. crops. in other conditions. A set of spectral images from the Sentinel-2 satellite (European Space Agency) was used for the forecast. The calculations were performed in the geographic information system QGIS (ver. 3.28.1 “Firenze”) and SAGA GIS9.3.1. According to the forecast, the yield of Triticum aestivum L. was 60.41 ± 0.06 kg/ha, the forecast error compared to the actual one was 2.2%.
About the Authors
M. S. ZverkovRussian Federation
Mikhail S. Zverkov, CSc (Eng), senior researcher
140483, Moscow region, Kolomna city district, village Raduzhny, 33a
57221661750 Scopus
RSCI authorid: 751258
S. S. Smelova
Russian Federation
Svetlana St. Smelova, CSc (Bio), associate professor, senior researcher
140483, Moscow region, Kolomna city district, village Raduzhny, 33a
6504283625 Scopus
RSCI authorID: 651060
References
1. Cherepanov A.S. Spectral properties of vegetation and vegetation indices / A.S. Cherepanov, E.G. Druzhinina // Geomatics. 2009. No. 3. P. 28-32.
2. Hassan M.A., Yang M., Rasheed A., Yang G., Reynolds M., Xia X., Xiao Y., He Z. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform // Plant science: an international journal of experimental plant biology. 2019. Vol. 282. P. 95-103. DOI: 10.1016/j.plantsci.2018.10.022.
3. Becker-Reshef I., Vermote E., Lindeman M., Justice C. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data // Remote Sensing of Environment, 2010, vol. 114(6), P. 1312-1323. DOI: 10.1016/j.rse.2010.01.010.
4. Belmahi M., Hanchane M., Krakauer N.Y., Kessabi R., Bouayad H., Mahjoub A., Zouhri D. Analysis of Relationship between Grain Yield and NDVI from MODIS in the Fez-Meknes Region, Morocco // Remote Sensing, 2023, vol. 15(11). DOI: 10.3390/rs15112707.
5. Abdushayeva Ya.M. Assessment of the production process of winter wheat plants by the vegetation index // Agro Eco Engineering. 2024. No. 2(119). P. 18-29. DOI: 10.24412/2713-2641-2024-2119-18-29.
6. M.S. Zverkov, Analysis of the state of irrigated crops according to remote sensing data using the NDVI spectral index / M.S. Zverkov, S.S. Smelova // Ecology and construction. 2024. No. 1. P. 24-34. DOI: 10.35688/2413-8452-2024-01-004.
7. Ren J., Chen Z., Zhou Q., Tang H. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China // International Journal of Applied Earth Observation and Geoinformation, 2008. Vol. 10(4). P. 403-413. DOI: 10.1016/j.jag.2007.11.003.
8. Normalized difference vegetation index as a tool for wheat yield estimation: a case study from Faisalabad, Pakistan / Sultana S.R., Ali A., Ahmad A. et al. // The Scientific World Journal, 2014, 725326, 8 p. DOI: 10.1155/2014/725326.
9. The use of the NDVI vegetative index for predicting grain yields / S.A. Rodimtsev, N.E. Pavlovskaya, S.V. Vershinin [et al.] // Bulletin of the NGAU (Novosibirsk State Agrarian University). 2022. No. 4(65). P. 56-67. DOI: 10.31677/2072-6724-2022-65-4-56-67. EDN IRLXQG.
10. Duan T., Chapmana S.C., Guo Y., Zheng B. Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle // Field Crops Research, 2017. Vol. 210, P. 71-80. DOI: 10.1016/j.fcr.2017.05.025.
11. Assessing Correlation of High-Resolution NDVI with Fertilizer Application Level and Yield of Rice and Wheat Crops Using Small UAVs / Guan S., Fukami K., Matsunaka H., et al. // Remote Sensing, 2019, vol. 11, 112. DOI: 10.3390/rs11020112.
12. Wheat Yield and Protein Estimation with Handheld and Unmanned Aerial Vehicle-Mounted Sensors / Walsh O.S., Marshall J.M., Nambi E. et al. // Agronomy 2023, vol. 13, p. 207. DOI: 10.3390/agronomy13010207.
13. Zsebő S, Bede L, Kukorelli G, Kulmány IM, Milics G, Stencinger D, Teschner G, Varga Z, Vona V, Kovács AJ. Yield Prediction Using NDVI Values from GreenSeeker and MicaSense Cameras at Different Stages of Winter Wheat Phenology // Drones. 2024. Vol. 8, no. 3. P. 88. DOI: 10.3390/drones8030088.
14. Bioclimatic potential of Russia: methods of monitoring in a changing climate / A.D. Kleshchenko, B.A. Chernyakov, O.D. Sirotenko [et al.]; Edited by A.V. Gordeev. Moscow: Printing House of the Russian Agricultural Academy, 2007. 236 p.
15. Handbook of the agronomist of the Non-Chernozem zone / edited by G.V. Gulyaev. Moscow: Agropromizdat, 1990. 575 p.
Review
For citations:
Zverkov M.S., Smelova S.S. Forecast of winter wheat yield (Triticum aestivum L.) by the value of the NDVI vegetation index. Prirodoobustrojstvo. 2025;(2):43-49. (In Russ.) https://doi.org/10.26897/1997-6011-2025-2-43-49