Preview

Prirodoobustrojstvo

Advanced search

Potential productivity of forests of the Moscow region in connection with climatic changes

https://doi.org/10.26897/1997-6011-2023-5-118-124

Abstract

The results of long-term meteorological observations indicate that climate warming is a real phenomenon that has been accelerating significantly in recent decades. Climate change creates new conditions for forestry. The purpose of the study is to determine the potential productivity of the forests of the Moscow region and its unrealized potential in the conditions of ongoing climatic changes. The results of long-term meteorological observations are used in the work. To assess the impact of changes in the provision of heat and moisture on forests, methods based on the dependence of potential productivity on climatic factors were used. Over the past 100 years, there have been significant changes in the climatic conditions of the growth of stands, taking place against the background of increasing concentrations of greenhouse gases in the atmosphere: an increase in the average annual temperature (more than 2 times compared to the beginning of the XX century) and an increase in the duration of the growing season (on average by 30‑40 days), changes in the annual amount of precipitation and their redistribution by seasons year. According to the calculations carried out, along with this, there has been an increase in the potential productivity of the forests of the Moscow region by 1.6 times over the past 120 years. In conditions of an increase in the average annual temperature, precipitation, and the duration of the growing season, an important task of forestry should be the adaptation of forestry measures to current changes in order to increase forest productivity and the level of provision of ecosystem services, to adapt forestry to new conditions.

About the Authors

N. N. Dubenok
Russian State Agrarian University – Moscow Agricultural Academy named after C.A. Timiryazev
Russian Federation

Dubenok Nikolay Nikolaevich, academician of the Russian Academy of Sciences, doctor of agricultural sciences, professor; (WOSResearchID: AAZ‑7746‑2020; Scopus Author ID: 57200111134 RSCID: 315062)

127434, Moscow, Timiryazevskaya str., 49



A. V. Lebedev
Russian State Agrarian University – Moscow Agricultural Academy named after C.A. Timiryazev
Russian Federation

Lebedev Aleksandr Vyacheslavovich, candidate of agricultural sciences, associate professor, (WS Research ID: AJAX‑9891‑2020; Scopus Author ID: 57214907823RINCID: 738683)

127434, Moscow, Timiryazevskaya str., 49



V. M. Gradusov
Russian State Agrarian University – Moscow Agricultural Academy named after C.A. Timiryazev
Russian Federation

Gradusov Viktor Mikhailovich, senior lecturer, Scopus Author ID: 57222573480; PRINCE ID: 604352

127434, Moscow, Timiryazevskaya str., 49



References

1. Zamolodchikov D.G. Natural and anthropogenic concepts of modern climate warming // Bulletin of the Russian academy of sciences. 2013. Vol. 83, No. 3. P. 227-235.

2. Snakin V.V. Global climate changes: forecasts and reality // Life of the Earth. 2019. Vol. 41, No. 2. P. 148-164.

3. Dubenok N.N., Lebedev A.V., Chistyakov S.A. Infl uence of climatic changes on the dynamics of natural processes in the reserve “Kologrivskiy les” // Usage and protection of of natural resources in Russia. 2022. No 3(171). P. 52-56.

4. Pretzsch H. Forest stand growth dynamics in Central Europe have accelerated since 1870 / H. Pretzsch, P. Biber, G. Schütze, E. Uhl, T. Rötzer // Nature Communications. 2014. № 5. Article number 4967. – DOI: 10.1038/ncomms5967.

5. Socha J. Height growth rate of Scots pine in Central Europe increased by between 1900 and 2000 due to changes in site productivity / J. Socha, S. Solberg, L. Tymińska-Czabańska P., Tompalski P. Vallet // Forest Ecology and Management. 2021. Vol. 490. id 119102. – DOI: 10.1016/j.foreco.2021.119102.

6. Lebedev A.V. Changes in the growth of Scots pine (Pinus sylvestris L.) stands in an urban environment in European Russia since 1862 // Journal of Forestry Research. 2022. – DOI: 10.1007/s11676-022-01569-z.

7. Lebedev A.V. Changes in the biomass of trees of Scots pine (Pinussylvestris) in Europe since 1940 / A.V. Lebedev, V.V. Kuzmichev // Izvestiyaof Saint-Peterburg forestry academy. 2021. № 234. P. 6-22. – DOI: 10.21266/2079-4304.2021.234.6-22.

8. Lebedev A. Changes of tree stem biomass in European forestssince 1950 / A. Lebedev, V. Kuzmichev // Journal of Forest Science. 2022. Vol. 68, No. 3. P. 107-115. – DOI: 10.17221/135/2021-JFS.

9. Zamolodchikov D., Kraev G. Influence of climate changes on the forests of Russia: fixed impacts and prognostic estimates. 2016. № 4. P. 23-31.

10. Gudkovich Z.M. What is happening to the Earth’s climate? / Z.M. Gudkovich, V.P. Karklin, V.M. Smolyanitskiy, I.E. Frolov // Ekological Vestnik of Russia. 2012. № 5. P. 34-41.

11. AkasofuS. – I. Ontherecoveryfromthe Little Ice Age / S. – I. Akasofu // Natural Science. 2010. Vol. 2, № 11. P. 1211-1224. – DOI: 10.4236/ns.2010.211149.

12. Klyashtorin L.B. Comparative dynamics of global and arctic climate. Possibility of forecasting // Global ecological processes: proceedings of the International scientific conference. Moscow, Academia Publ., 2012. P. 46-52.

13. Hansen J. Global warming in the twenty-first century: An alternative scenario / J. Hansen, M. Sato, R. Ruedy, A. Lacis, V. Oinas // PNAS. 2000. № 97(18). P. 9875-9880. – DOI: 10.1073/pnas.170278997.

14. Kotlyakov V.M. On the causes and consequences of modern climate changes // Solar-terrestrial physics. 2012. Iss. 21., pp. 110-114.

15. Bondarenko L.V. Global climate change and its consequences / L.V. Bondarenko, O.V. Maslova, A.V. Belkina, K.V. Sukhareva // Vestnik of the Russian economic university named after G.V. Plekhanov. 2018. № 2. P. 84-93. – DOI: 10.21686/2413-2829-2018-2-84-93.

16. Shreiber V.M. From the history of research of the greenhouse effect of the earth’s atmosphere. 2013. Vol. 5, No. 1. P. 37-46.

17. Semenov S.M. Greenhouse effect: discovery, development of the concept, role in the formation of global climate and its anthropogenic changes // Fundamental and applied climatology. 2015. V. 2. P. 103-126.

18. Denisov S.N. Contribution of natural and anthropogenic emissions of CO2 and CH4 to the atmosphere from the territory of Russia to global climate changes in the XXI century / S.N. Denisov., A.V. Eliseev, I.I. Mokhov Reports of the Academy of Sciences. 2019. Vol. 488, No. 1, P. 74-80. – DOI: 10.31857/S0869-5652488174-80.

19. Lukina N.V. Global challenges and forest ecosystems // Vestnikof RAS. 2020.V. 90, № 6. P. 528-532. – DOI: 10.31857/S0869587320060080.

20. Sennikov V.A. Use of agroclimatic information (according to the data of 100-year observations of meteorological observatories named after V.A. Mikhelson): methodical instructions / V.A. Sennikov Yu.I. Chirkov, L.G. Larin, B.I. Ogorodnikov, M.V. Polad-zade: Izvestiya TSHA, Iss. 3, 1988.

21. Paterson S.S. The forest area of the world and its potential productivity: Doctoral thesis. Göteborg: Goteburg University Press, 1956.

22. Benavides R., Roig S., Osoro K. Potential productivity of forested areas based on a biophysical model. A case study of a mountainous region in northern Spain / R. Benavides, S. Roig, K. Osoro // Annals of Forest Science. 2009. № 66 (1). P. 1. – DOI: 10.1051/forest/2008080.

23. Diodato N. Spatial probability modelling of forest productivity indicator in Italy / N. Diodato, G. Bellocchi // Ecological Indicators. 2020. № 108. P. 105721. – DOI: 10.1016/j.ecolind.2019.105721.

24. De Martonne E. Areisme et indiced’aridite / E. ́ De Martonne // Comptes Rendus de L’Academie des Scien ́ - ces. 1926. № 182. P. 1395-1398.

25. Pardé J. A new concept and fruitful: the index C.V.P. / J. Pardé // Rev for Franc. 1958. № 10. P. 195-201.

26. Gandullo J.M. Mapa de productividadpotencialforestal de la Espana peninsular / J.M. ̃ Gandullo, R. Serrada. Madrid: Instituto Nacional de Investigacion y Tecnologi ́ a ́ Agraria y Alimentaria, 1977.

27. Rahman Md.S. Forest and agro-ecosystem productivity in Bangladesh: a climate vegetation productivity approach / Md.S. Rahman, S. Akter, M. Al-Amin // Forest Science and Technology. 2015. № 11 (3). P. 126-132. – DOI: 10.1080/21580103.2014.957358.

28. Vanclay J.K. Modelling Forest growth and yield, applications to mixed tropical forests / J.K. Vanclay. Wallingford: CAB International, 1994. 313 p.

29. Report on climate features in the Russian Federation for 2020. Moscow, 2021. 104 p.

30. Pashkov A.V. Bioresource potential of the forests of the Moscow region as a perspective for forest management in the region. 2014. No. 2-S. P. 91-96.

31. Soldatov M.S. Forecast of changes in wood growth in the forests of the European part of Russia in connection with global warming / M.S. Soldatov, S.M. Malkhazova., V.Yu. Rumyantsev. N.B. Leonova. Izvestiya of RAS. The series is geographical. 2014. № 2. P. 96-102.

32. Dubenok N.N. Climate Change and Dynamics of the Forest Area at the Forest Experimental Station of the Timiryazev Agricultural Academy since 1862 / N.N. Dubenok, A.V. Lebedev, A.V. Gemonov // IOP Conference Series: Earth and Environmental Science, 2021. P. 012025. – DOI: 10.1088/1755-1315/852/1/012025.

33. Dubenok N.N. Hydrological role of forest plantations of the small water basin / N.N. Dubenok, A.V. Lebedev, A.V. Gemonov // Russian agricultural science. 2021. No 3. P. 3-6. – DOI: 10.31857/S2500262721030017.


Review

For citations:


Dubenok N.N., Lebedev A.V., Gradusov V.M. Potential productivity of forests of the Moscow region in connection with climatic changes. Prirodoobustrojstvo. 2023;(5):118-124. (In Russ.) https://doi.org/10.26897/1997-6011-2023-5-118-124

Views: 238


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1997-6011 (Print)